米勒效應對MOSFET的危害

2023-04-26 09:13:18 來源:MDD辰達半導體

前言


【資料圖】

對于MOSFET,米勒效應(Miller Effect)指其輸入輸出之間的分布電容(柵漏電容)在反相放大作用下,使得等效輸入電容值放大的效應。由于米勒效應,MOSFET柵極驅動過程中,會形成平臺電壓,引起開關時間變長,開關損耗增加,給MOS管的正常工作帶來非常不利的影響。

Number01.理解米勒效應

可以看成是一個電容的負反饋。在驅動前,Crss上是高電壓,當驅動波形上升到閾值電壓時,MOS管導通,d極電壓急劇下降,通過Crss拉低g腳驅動電壓,如果驅動功率不足,將在驅動波形的上升沿閾值電壓附近留下一個階梯,如下圖。

有時甚至會有一個下降尖峰趨勢平臺,而這個平臺增加了MOS管的導通時間,造成了我們通常所說的導通損耗。

Number02.MOSFET結構及寄生電容的分布

MOSFET結構

圖1:垂直型MOSFET結構

圖1是垂直型MOSFET的結構,它是一個由P區域和 N+的源區組成的雙擴散結構。漏極(drain)和源極(source)分別放在晶圓的兩面,這樣的結構適合制造大功率器件。因為可以通過增加外延層(epitaxial layer)的長度,來增加漏源極之間的電流等級,提高器件的擊穿電壓能力。另外從圖中,還可以清晰看出MOSFET的寄生體二極管

寄生電容

圖2. MOSFET的寄生電容及等效電路

MOSFET的寄生電容主要包括柵源電容(Cgs)、柵漏電容(Cgd)以及漏源電容(Cds)。從圖2中左圖看到,Cds是由漏極和源極之間的結電容形成,Cgd柵極和漏極間的耦合電容。Cgs則較為復雜,由柵極和源極金屬電極之間的電容Co、柵極和 N+ 源極擴散區的電容 CN+ ,以及柵極和擴散區P區的電容Cp組成。

一般器件的手冊中,都會以下列形式給出MOSFET的寄生電容,

輸入電容: Ciss=Cgd+Cgs輸出電容: Coss=Cgd+Cds反向傳輸電容:Crss=CgdNumber03.MOSFET的開通過程

①t0—t1階段

這個過程中,驅動電流ig為Cgs充電,Vgs上升,Vds和Id保持不變。一直到t1時刻,Vgs上升到閾值開啟電壓Vg(th)。在t1時刻以前,MOS處于截止區。

②t1—t2階段

t1時刻,MOS管就要開始導通了,也就標志著Id要開始上升了。這個時間段內驅動電流仍然是為Cgs充電,Id逐漸上升,在上升的過程中Vds會稍微有一些下降,這是因為下降的di/dt在雜散電感上面形成一些壓降。

從t1時刻開始,MOS進入了飽和區。在飽和有轉移特性:Id=Vgs*Gm。其中Gm是跨導,只要Id不變Vgs就不變。Id在上升到最大值以后,而此時又處于飽和區,所以Vgs就會維持不變。

③t2—t3階段

從t2時刻開始,進入米勒平臺時期,米勒平臺就是Vgs在一段時間幾乎維持不動的一個平臺。此時漏電流Id最大。且Vgs的驅動電流轉移給Cgd充電,Vgs出現了米勒平臺,Vgs電壓維持不變,然后Vds就開始下降了。

④t3~t4階段

當米勒電容Cgd充滿電時,Vgs電壓繼續上升,直至MOS管完全導通。

以上是MOS管開通的四個過程。

所以在米勒平臺,是Cgd充電的過程,這時候Vgs變化很小,當Cgd和Cgs處在同等水平時,Vgs才開始繼續上升。

Number04.米勒效應對MOSFET開關過程的影響

下面以圖4中電機控制電路來說明米勒效應對MOSFET開通關斷過程的影響。在圖10控制電路中,上管導通時,VDD通過Q1、Q4對電機進行勵磁;上管關斷時,電機通過Q4、Q3進行去磁。在整個工作過程中,Q4一直保持開通,Q1, Q2交替開通來對電機轉子進行勵磁和去磁。

圖4. 電機控制電路

圖5,圖6是上下管開通關斷時驅動電壓測試波形。可以清楚的看到,在上管開通和關斷時,下管柵極上會產生一個尖峰,尖峰的電壓增加了上下管同時導通的風險,嚴重時會造成非常大的電流同時流過上下管,損壞器件。

圖5. 上管開通下管關斷時的測試波形

圖6. 上管關斷上管開通時的測試波形

下管開通關斷出現的這種波形是由漏柵電容導致的寄生開通現象。在下管關斷后,上管米勒平臺結束時,橋臂中點電壓由0升到VDD,MOSFET的源極和漏極之間產生陡峭的的dV/dt。由此在漏柵電容產生的電流會流到柵極,經柵極電阻到地,這樣就會在柵極電阻上產生的電壓降。這種情況,就會可能發生上下管同時導通,損壞器件。

下管的這個Vgs尖峰電壓(也有公司稱之為Vgs bouncing)可以表達為:

Rgoff驅動關斷電阻,Rg,ls(int)為MOSFET柵極固有電阻,Rdrv為驅動IC的電阻。從公式(1)可以看到,該電壓與Rgtot和Cgd呈正向相關。

所以解決這個問題有兩類方法:

1. 減小Rgtot。由公式(2)知道,Rg,ls(int)由器件本身決定,Rdrv由驅動IC決定,所以一般是選擇合適的Rg來平衡該Vgs bouncing電壓。

2. 選擇Crss/Ciss(即Cgd/Cgs)低的MOSFET有助于降低Vgs尖峰電壓值。或者在MOSFET柵源之間并上一個電容,也會吸收dV/dt產生的漏刪電流。圖7是在下管的GS兩端并聯5.5nF電容后的開關波形,可以看到電壓明顯降低,由圖5中的3.1V降低到1.7V,大大降低了上下管貫通的風險。

同理,上管關斷至米勒平臺結束時,下管開通前,橋臂中點電壓由VDD降為0,MOSFET的源極和漏極之間產生陡峭的的dV/dt。由此就會在柵極上面產生一個負壓。

同時,由圖5,圖6,可以觀察到,下管開通關斷過程中,都沒有出現米勒平臺現象。這是因為在其開通關斷時,由于Motor中的電流經過下管的體二極管續流,DS兩端電壓很小,所以米勒平臺也就形成不了了。

審核編輯:湯梓紅

標簽:

上一篇:MOS管的工作狀態以及NMOS管的I/V特性曲線
下一篇:最后一頁